体 図 斜 译 北 ボ オ 译 China/US joint Winter School on Novel Superconductors

Superconducting materials: conventional and unconventional

Xianhui Chen

University of Science and Technology of China

Hong Kong, 2013-01-21

Outline

- I. Unconventional superconductors Common features
- **II.** Chronology for new superconductor before cuprates
- **III.** Superconductors discovered after Cuprate Superconductors
 - * Unconventional superconductors
 - **Triangle lattice** $Na_xCoO_2 \cdot yH_2O$, Sr_2RuO_4 with p-wave symmetry, Heavy Fermion, Ferromagnetic SC, Non-centrosymmetry,
 - * Superconductors with Tc>20 K
 - Intercalated HfNCl, MgB₂, Ba_{1-x}K_xBiO₃, Fullerides, Organic superconductors, Borocarbides, Iron-pnictides
 - * Others and superconductivity induced by different ways Liquid gating, pressure, topological superconductor etc.

Discovery of Superconductivity

Heike Kamerlingh Onnes

In 1908, Holland physicist H.K. Onnes successfully liquefied Helium, and a new low temperature region (<4.2K) was then achieved. In 1911, he found the resistance of Hg becomes zero as temperature reaches 4.2 K. He named the new state as superconductivity Nobel award in Physics in 1913

Perfect Diamagnetism: Meissner Effect

Perfect diamagnetism: susceptibility x = -1, Meissner Effect

Elemental Superconductors

Chronology for new superconductors before cuprates

- ↓ In 1911, H. K. Onnes found that Hg exhibited sudden zero resistance at 4.2
 K, and defined the new physical state as superconductivity (Nobel award in Physics in 1913).
- ↓ In 1913, H. K. Onnes observed SC in Pb below 7.2 K.
- + In 1930, metal Nb was found to be superconducting with $T_c=9.2$ K, which is the highest T_c for pure elemental metals at ambient.
- + In 1958, J. Hulm and B. T. Matthias discovered superconductors with A15 structure and yielded materials with $T_c > 20$ K.
- \downarrow In 1975, Metal oxide BaPb_{1-x}Bi_xO₃ with T_C = 13K.
- ↓ In 1979, F. Steglich discovered heavy-fermion superconductor (unconventional).
- In 1980, D. Jerome discovered the first organic superconductor.
- \downarrow In 1986, K. A. Müller and G. Bednorz discorved the first high-temperature superconductor LaBaCuO with T_c > 30K (Nobel award in Physics in 1987)

Conventional and unconventional superconductivity

Conventional superconductivity: cooper pair mediated by e-p interaction, follows BCS theory McMillan limitation Tc~39 K

Rules of Mathias for discovering conventional superconductors

B. Matthias

- 1. High symmetry is best
- 2. Peaks in density of states are good
- 3. Stay away from oxygen
- 4. Stay away from magnetism
- 5. Stay away from insulators

Unconventional superconductivity cannot be explained by BCS theory and Matthias rules: closely related to oxides, magnetism, insulator etc.

Unconventional superconductors Examples of Superconductors

	Hg	first superconductor ever discovered	4.1 K
	Nb	highest T_{c} amongst the elements	9.3 K
	NbTi	used in superconducting magnets up to \sim 9 T	10 K
	Nb₃Sn	used in superconducting magnets up to ~ 20 T	24.5 K
	MgB ₂	highest T _c amongst "conventional" superconductors	39 K
1979	CeCu ₂ Si ₂	first of the heavy-fermion superconductors	~0.8 K
	La _{2-x} Ba _x CuO ₄	first of the cuprate superconductors	~35K
	YBa ₂ Cu ₃ O _{7-δ}	cuprate superconductor with T_c above liquid nitrogen temperatures	92 K
	$HgBa_2Ca_2Cu_3O_{8+\delta}$	highest T_{c} superconductor to date	164 K
	Sr ₂ RuO ₄	p-wave superconductor	1.5 K
	UGe ₂	first ferromagnetic superconductor	0.3 K

Superconductivity in proximity to magnetism

Unconventional superconductivity: external conditions (Pressure)

Mott Insulator with s=1/2

SDW

Structure-Magnetism-Superconductivity Competing between SC and other ordering: SC/AFM; SC/SDW; SC/CDW Cuprates; iron-pnictides; dicalcogenides

Strong 2D character is very important for unconventional SC

Chronology for new superconductors after cuprates

- In 1911, H. K. Onnes found that Hg exhibited sudden zero resistance at 4.2 K, and defined the new physical state as superconductivity (Nobel award in Physics in 1913).
- **4** In 1913, H. K. Onnes observed SC in Pb below 7.2 K.
- **4** In 1930, metal Nb was found to be superconducting with $T_c=9.2$ K, which is the highest T_c for pure elemental metals at ambient.
- ↓ In 1958, J. Hulm and B. T. Matthias discovered superconductors with *A15* structure and yielded materials with $T_c > 20$ K.
- 4 In 1975, Metal oxide $BaPb_{1-x}Bi_xO_3$ with $T_C = 13K$.
- **4** In 1979, F. Steglich discovered heavy-fermion superconductor (unconventional).
- 4 In 1980, D. Jerome discovered the first organic superconductor.
- **4** In 1986, K. A. Müller and G. Bednorz discorved the first high-temperature superconductor LaBaCuO with $T_c > 30K$ (Nobel award in Physics in 1987)
- **4** In 1987, **Zhong-xian Zhao** and **Paul Ching-wu Chu**, independently to each other, discovered $YBa_2Cu_3O_{7-8}$ with $T_c \sim 92K$, which is the first superconductor with T_c higher than the boiling point of liquid N_{2°

Discovery of unconventional superconductivity

Chronology for new superconductors

- **H** In 1988, H. Maeda *et al.* discovered $Bi_2Sr_2Ca_2Cu_3O_{10}$ with $T_C \sim 110K$
- + In 1988, Sheng and Herman discovered Tl₂Ba₂Ca₂Cu₃O₁₀ with T_C ~125K
- **4** In 1991, R. C. Haddon *et al.* observed SC in K_3C_{60} with $T_C=18K$
- + In 1993, K. Tanigaki *et al.* observed SC in $RbCs_2C_{60}$ with $T_C=33 K$
- In 1993, A. Schilling *et al.* discovered HgBa₂Ca₂Cu₃O₈ with T_C ~134 K . HgBa₂Ca₂Cu₃O₈ keeps the record of highest Tc, and has T_C ~ 164 K under high pressure .
- In 1995, T. T. M. Palstra *et al.* observed SC under high pressure in Cs_3C_{60} with $T_c=38K$
- In 2001, J. Nagamatsu *et al.* observed SC in intermetallic MgB₂ with $T_C \sim 39K$, which keeps the record for highest Tc of intermetallic compounds.
- In 2008年, H. Hosono *et al.* observed T_c in LaFeAsO_{1-x}F_x reached 26K, subsequently, X. H. Chen and N. L. Wang et al. found T_c in SmFeAsO_{1-x}F_x and CeFeAsO_{1-x}F_x exceeded the McMillan limit (40 K), Z. X. Zhao *et al.* found $T_c \sim 55K$ in SmFeAsO_{1-x}F_x, which is highest Tc in this type of superconductors, demonstrating FeAs-based compounds are the second type of high-temperature superconductor after cuprates \circ
- In 2010, Y. Kubozono *et al.* discovered that K-doped Picene shows T_C~18 K, renewing the record of highest Tc in organic superconductivity.

Chronology for new superconductors

Copper Oxide Superconductors

134 K (164 K @ 30GPa) - Record holder

Hg-Family

Abbrev. Hg-1234

Hg-1223

Hg-1201

TI-2223

TI-2212

TI-2201

Bi-2223

Bi-2212

Bi-2201

Y-123

Y-124

LaSr-214

LaBa-214

T. 125 K

95 K

 $HgBa_2Ca_3Cu_4O_{10+\delta}$ $HgBa_2Ca_2Cu_3O_{8+\delta}$ $HgBa_2CuO_{4+\delta}$

TI-Family

 $Tl_2Ba_2Ca_2Cu_3O_{10+\delta}$ $Tl_2Ba_2CaCu_2O_{6+\delta}$ $Tl_2Ba_2CuO_{6+\delta}$

Bi-Family

 $\begin{array}{l} Bi_2Sr_2Ca_2Cu_3O_{10+\delta}\\ Bi_2Sr_2CaCu_2O_{8+\delta}\\ Bi_2Sr_2CaCu_2O_{8+\delta}\end{array}$

Y-Family

YBa2Cu3O7+8 Y2BaCu4O7+8

La-Family

La_{2-x}Sr_xCuO₄₊₈ La_{2-x}Ba_xCuO₄₊₈

Others

Ca_{1-x}Sr_xCuO₂ Nd_{2-x}Ce_xCuO₄₊₈

128	K
118	K
95 K	(can be highly overdoped)
112	К
120	K
103	K

110 K 91 K (photoemission/tunneling -cleaves) 35 K

94 K (cleanest – most highly studied) 82 K

40 K (full doping range) 30 K (1st cuprate superconductor)

110 K 30K

High-Tc superconducting cuprates

Phase diagram and d-wave pairing symmetry

Typical superconductors and their Tc

Superconductors discovered after Cuprate Superconductors

*** Unconventional superconductors**

Triangle lattice $Na_xCoO_2 \cdot yH_2O$, Sr_2RuO_4 with p-wave symmetry,Heavy Fermion,Ferromagnetic SC,Non-centrosymmetry.

Superconductivity at 5 K in Na_xCoO₂·yH₂O strong correlations and unconventional SC

K. Takada et al., Nature 422, 53(2003)

$Na_{x}CoO_{2} \cdot yH_{2}O$:

strong correlations and unconventional SC

(a) x=0.5

$Na_{x}CoO_{2} \cdot yH_{2}O$:

strong correlations and unconventional SC

Superconductivity in Sr₂RuO₄ chiral spin-triplet p-wave pairing?

Y. Maeno et al. Nature (1994)

Sr₂RuO₄:

chiral spin-triplet p-wave pairing?

"p-wave"

S = 1 triplet

L = 1 p-wave

0.10

P, Ic

S = 0 singlet "s-wave" L = 0 s-wave +S = 0 singlet "d-wave" L = 2 d-wave Tc = 1.5 K

Unconventional SC

Fermi surface sheets

Heavy fermion superconductors discovered after YBCO

Competition between SC and magnetism

Ferromagnetic superconductors

S.S. Saxena et al., Nature 406, 587 (2000)

UGe₂ URhGe UCoGe Maybe ZrZn₂

Non-centrosymmetric superconductors

Non-centrosymmetric superconductors:

Heavy Fermion

Non-centrosymmetric superconductors:

Weakly correlated systems

Li₂Pd₃B

Superconductors discovered after Cuprate Superconductors

*** Superconductors with Tc>20 K**

Intercalated HfNCl, MgB₂, Ba_{1-x}K_xBiO₃, Fullerides,

Organic superconductors, Borocarbides, Iron-pnictides

First copper-free superconductor with $T_C > 30$ K

Intercalated ZrNCl and HfNCl

S. Yamanaka et al., *Nature* **392**, 580 (1998)

Superconductivity and Structure of HfNCl, Yb_{0.2}(NH₃)_yHfNCl, Yb_{0.2}(NH₃)_yHfNCl and Yb_{0.2}(THF)_yHfNCl

G. J. Ye, X. H. Chen et al., *PRB* (2012)

Tc=25.2 K
Highest Tc (39K) in the e-p mediated superconductors: MgB₂

The first determined two-gap superconductor

Fullerene superconductors

R.C. Haddon et al. *Nature* **350**, 320 (1991)

T.T.M. Palstra et al. Solid State Commun. 93, 327 (1995)

Superconductivity: Conventional or unconventional?

STM spectrum: Good fit in BCS thoery

Z. Zhang et al. *Nature* **353**, 333 (1991)

Y. Takabayashi et al. Science 323, 1585 (2009)

Metal-intercalated graphite superconductors

Organic superconductors

SCIENTIFIC AMERICAN

FEBRUARY 1965

VOLUME 212 NUMBER 2

SUPERCONDUCTIVITY AT ROOM TEMPERATURE

IT HAS NOT YET BEEN ACHIEVED, BUT THEORETICAL STUDIES SUGGEST THAT IT IS POSSIBLE TO SYNTHESIZE ORGANIC MATERIALS THAT, LIKE CERTAIN METALS AT LOW TEMPERATURES, CONDUCT ELECTRICITY WITHOUT RESISTANCE

New Organic Superconductors

K₃Phenanthrene, X. H. Chen et al., *Nat. Commun.* (2011)

Superconductivity at 33 K in potassium-doped dibenzopentacene

- Question 1: Determination of superconducting phase and its crystal structure for hydrocarbon superconductors
- Question 2: Improve sample quality or growth of Single crystal suitable for physical property measurements
- Question 3:It is not easy to reproduce the resultsespecially for picene and dibenzopentacene shielding fraction less
than 5%, not reproducible for other group

New organic superconductors

T_c is enhanced from 4.7 K at ambient pressureSingle-gap s-waveto 5.9 K at 1 GPaL L Ving et al.PRB 85, 180511(P) (201

J. J. Ying et al., PRB 85, 180511(R) (2012).

X. H. Chen et al., Nat. Commun. (2011) Kasahara and Iwasa PRB (2012) (reproducible)

X-ray diffraction patter and crystals structure

Evolution of Tc and lattice parameters with pressure

Borocarbide superconductors

R.J. Cava Nature 367,146 (1994); 367, 252 (1994)

No isotope effect on C site, but pronounced on B site. Indication: e-p interaction

Does magnetic RE suppress superconductivity or not?

Substitution of magnetic ion Sm for non-magnetic ion La leads to an increase in Tc La(O,F)FeAs Tc=26 K, Sm(O,F)FeAs Tc=43 K and 55 K

It definitely indicates that iron pnictides are unconventional superconductors

Discovery of High-T_c iron-based superconductors

T_C= 26 K in LaO_{1-x}F_xFeAs

Discovery of High-T_c iron-based superconductors

Evolution of Tc with x in SmFeAsO_{1-x} F_x

R. H. Liu, X. H. Chen et al., *Phys. Rev. Lett.* **101**, 087001(2008)

Z.A. Ren and Z.X. Zhao et al., EPL (2008)

Coexistence and competition between SC and magnetism

Drew et al., Nat. Mater. (2009); Katayama et al., JPSJ (2010)

Iron-based high-T_c superconductors

Phase diagram in Ba_{1-x}K_xFe₂As₂ System

H. Chen, X. H. Chen et al., Europhys. Lett. 85, 17006 (2009).

Iron chalcogenides

Phase diagram : coexistecne of SDW and SC in pnictides

Phase diagram of Fe_xFe_{2-y}Se₂:

More than twenty single crystals
Phase I

Fe vacancy orders with modulation wave vector of $q_1 = (1/5, 3/5, 0)$ with larger positive TEP;

Phase III $q_2=(1/4, 3/4, 0)$ with larger negative TEP.

Phase II

Coxexistence of SC and AFM ? Phase separation mesoscopic or macroscopic?

Yan et al. Scientific Reports (2011) arXiv:1104.4941

How do the two phases stay in the superconducting regime?

Coexistence or phase separation

Correlation between the two phases or not?

Only one phase is observed for the sample $K_{0.8}$ Fe_{1.6} Se₂ (K₂Fe₄Se₅)

Evolution of the superconducting phase and insulating phase with temperature up to 600 K for K_{0.8}Fe₂Se₂

TEM observations in

in the phase diagram

 $q_1 = (1/5, 3/5, 0)$

 $q_2 = (1/4, 3/4, 0)$

Effect of post-annealing on Tc, 44 K phase develops

Temperatutre dependence of Mossbauer spectra

After annealing at 550 K for 3 days

I. Felner and X. H. Chen et al., Supercond. Sci. Technol. (2011)

Tc=44 K phase is intrinsic in K_xFe_{2-y}Se₂, Tc=32 K is observed due to mesoscopic phase separation of AFM and SC. AFM order is competing with SC. Suppression of AFM order leads to enhancement of Tc from 32 K to 44 K. These results suggest that there exists correlation between AFM and SC Superconductors discovered after Cuprate Superconductors
 * Others and superconductivity induced by different ways
 Liquid gating, pressure, topological superconductor etc.

SC in Liquid gated ZrNCI, HfNCI

Electric-field-driven SC

Gate-Tuned Band Insulator MoS₂

Interface SC between Mott insulator and Band Insulator

Superconductivity at 25 K in the elemental calcium under ultra-high pressure

Superconductivity at Tc>10 K in the elemental Lithium under ultra-high pressure

K. Shimizu et al. Nature 419, 597 (2002); V.V. Struzhkin et al. Science 298, 1213 (2002)

Topological superconductor

Cu_xTiSe₂: SC develops from CDW

E. Morosan et al., Nat. Phys. 2, 544 (2006)

Anti-provskite superconductor: MgCNi₃

First pyrochlore superconductor

В

3

В

300

Pyrochlore-related superconductor

Unconventional SC in strongly correlated system

- i) Typical Examples: Ruthenates (only superconductor, Sr_2RuO_4)
 - Heavy Fermion
 - Cuprates
 - Organic superconductors
 - Iron-pnictides and chalcogenides
- ii) Unconventional SC also exists in C60-derived superconductors

Why "unconventional"

- a) Non isotropic *s*-wave SC gap;
- b) Maybe not e-p mediated;
- c) Multiband effect may be important;
- d) Isotope effect disappears or not conventional;
- e) Coherent factor is different from prediction of BCS theory;
- f) Coherence length is small;
- g) Dimension is reduced;
- h) Metallic properties are weak or bad;
- i) SC emerges in proximity to magnetically ordered state;
- j) SC pairing order shows symmetric and time-inverse breaking

All above tell us that we must reconsider and the simple BCS theory should be amended.

Thank you for your attention!

Some features of Heavy fermion superconductors

Low Tc, heavy electron or hole involve in SC Pairing mechanism: (1) BCS-type; (2) *p*-wave; (3) low-energy spin-fluctuation mediated SC, intimately related to magnetic order

Some common HF superconductors:

* $CeMIn_5$ (M=Co,Ir,Rh,...) (2000)

* CeM_2X_2 (M=Cu,Ni,Ru,Rh,Pd,Au,...

X=Si,Ge,....)

*UPt₃, UBe₁₃, UGe₂, UPd₂Al₃

Compound	g (mJ/mol K ²)
CeCu ₂ Si ₂	1000
CeRhIn ₅	400
PrInAg ₂	6000
YbBiPt	8000
UBe ₁₃	1000
URu ₂ Si ₂	200
Na	1

Isotope effect in pnictide superconductors

Remarkable sensitivity of superconductivity and magnetism to the lattice

Indicating unconventional electron-phonon coupling

同位素效应对BCS理论的建立是至关重要的

Oxygen and Iron Isotope component α_{C} and α_{SDW}

*

R. H. Liu, X. H. Chen et al., Nature 459, 64-67(2009).

Inverse iron isotope effect in Ba_{1-x}K_xFe₂As₂

a=3.914(1) A, c=13.310(1)A for ⁵⁷Fe a=3.914(1) A, c=13.313(1)A for 54Fe

	$T_{c(v)}$ (K)			$\Delta T_{c(y)}$	$\alpha_{\rm Fe}$	
	⁵⁴ Fe	ⁿ Fe	⁵⁷ Fe	-(1)		
<i>S</i> 1		37.79(1)	37.91(1)	-0.12(2)	-0.16(3)	
S2	37.56(1)		37.82(2)	-0.26(3)	-0.13(1)	
<i>S</i> 3	37.51(1)	37.76(1)		-0.25(2)	-0.20(1)	
S4	37.54(1)	37.79(2)		-0.25(2)	-0.20(2)	
<i>S</i> 5	37.32(1)		37.75(1)	-0.43(2)	-0.21(1)	
<i>S</i> 6	37.42(1)		37.77(1)	-0.35(2)	-0.17(1)	
<i>S</i> 7	37.39(1)		37.76(1)	-0.37(2)	-0.18(1)	

High pressure synthesis, 50% extra K

Shirage et al., PRL103, 257003(2009).

Consistent isotopic effect in iron-pnictide superconductors

Harshman et al., PRB 77, 024523(2008).

	$(^{nature}Fe)$		$(^{light}Fe)$	$(^{heavy}Fe)$			
Sample	$T_C(K)$	α_{Fe}	$c(\mathring{A})$	$c(\AA)$	$\Delta c/c$	α_{Fe}^{str}	α_{Fe}^{int}
$FeSe_{1-x}$ ^[85]	8.21(4)	0.81(15)	5.48683(9)	5.48787(9)	> 0	$\simeq 0.4$	$\simeq 0.4$
$Ba_{0.6}K_{0.4}Fe_2As_2^{[82]}$	37.30(2)	0.37(3)	13.289(7)	13.288(7)	~ 0	~ 0	~ 0.35
$Ba_{0.6}K_{0.4}Fe_2As_2^{[83]}$	37.78(2)	-0.18(3)	13.313(1)	13.310(1)	< 0	~ -0.5	~ 0.35
$SmFeAsO_{0.85}F_{0.15}^{[82]}$	41.40(2)	0.34(3)	8.490(2)	8.491(2)	~ 0	~ 0	~ 0.35
$SmFeAsO_{1-y}$ ^[84]	54.02(13)	-0.024(15)	8.4428(8)	8.4440(8)	≥ 0	< 0	

YBCO: the first material with T_c higher than 77 K

In Spring of 1987, Paul Ching-Wu Chu (U. Houston) and Zhong-Xian Zhao (IOP) independently to each other, discovered that YBCO has a $T_{\rm C}$ of 92 K. Their work inspired a rapid succession of new high temperature superconducting materials, ushering in a new era in material science.

